0
2.7kviews
A particle travels on a circular path, whose distance travelled is defined by S=(0.5t3+3t)m. If the total acceleration is 10m/s2, at t=2 sec, find it's radius of curvature.
1 Answer
0
195views

Given:

S=(0.5t3+3t)ma=10m/s@t=2sec

Solution:

S=0.5 t^3+ 3t \\ V= \dfrac {d_s}{dt}=0.5 ×3t^2+ 3 \\ =1.5 t^2+3 \\ a_t = \dfrac {dv}{dt}=1.5 ×2t=3t \\ At\space\space t = 2 sec \\ a_t=10 m/s^2 \\ a=\sqrt{a_t^2+ a_n^2 } \\ a_n = \sqrt{a^2- a_t^2 } =\sqrt{10^2-6^2} =64 \\ a_n=8 m/s^2 \\ V=1.5 t^2+3 \\ V=9 m/s^2\space at\space t = 2sec \\ ρ= \dfrac {V^2}{a_n} = \dfrac {9^2}8=10.125 m

Radius of curvature = 10.125m

Please log in to add an answer.