written 7.9 years ago by | modified 2.9 years ago by |
Determine the group code $e_H: B^3- \gt B^6$
Mumbai University > Computer Engineering > Sem 3 > Discrete Structures
Marks: 4 Marks
Year: Dec 2014
written 7.9 years ago by | modified 2.9 years ago by |
Determine the group code $e_H: B^3- \gt B^6$
Mumbai University > Computer Engineering > Sem 3 > Discrete Structures
Marks: 4 Marks
Year: Dec 2014
written 7.9 years ago by |
We have
$$N=\begin{bmatrix} 1&0&0 \\ 0&1&1 \\ 1&1&1 \end{bmatrix}$$
And
$B^3= \{000, 001, 010, 011, 100, 101, 110, 111\}.$
Then,
$000*\begin{bmatrix} 1&0&0 \\ 0&1&1 \\ 1&1&1 \end{bmatrix}=000, \ \ \ \ \ \ \ 001* \begin{bmatrix} 1&0&0 \\ 0&1&1 \\ 1&1&1 \end{bmatrix}=111 \\ 010 * \begin{bmatrix} 1&0&0 \\ 0&1&1 \\ 1&1&1 \end{bmatrix}=011, \ \ \ \ \ \ \ 011 * \begin{bmatrix} 1&0&0 \\ 0&1&1 \\ 1&1&1 \end{bmatrix}=100 \\ 100 * \begin{bmatrix} 1&0&0 \\ 0&1&1 \\ 1&1&1 \end{bmatrix}=100, \ \ \ \ \ \ \ 101 * \begin{bmatrix} 1&0&0 \\ 0&1&1 \\ 1&1&1 \end{bmatrix}=011 \\ 110 * \begin{bmatrix} 1&0&0 \\ 0&1&1 \\ 1&1&1 \end{bmatrix}=111, \ \ \ \ \ \ \ 111 * \begin{bmatrix} 1&0&0 \\ 0&1&1 \\ 1&1&1 \end{bmatrix}=000$
Hence, the required group code is
$e_H= (000) =000000 \ \ \ \ \ \ \ \ \ \ \ \ \ \ e_H= (001) =001111 \\ e_H= (010) =010011 \ \ \ \ \ \ \ \ \ \ \ \ \ \ e_H= (011) =011100 \\ e_H= (100) =100100 \ \ \ \ \ \ \ \ \ \ \ \ \ \ e_H= (101) =101011 \\ e_H= (110) =110111 \ \ \ \ \ \ \ \ \ \ \ \ \ \ e_H= (111) =111000$