written 7.9 years ago by | • modified 4.5 years ago |
Calculate the complete range of projection and the initial velocity of the projectile
written 7.9 years ago by | • modified 4.5 years ago |
Calculate the complete range of projection and the initial velocity of the projectile
written 7.9 years ago by |
Let velocity at A be $V_A$ makes an angle θ to the horizontal.
A to B
Horizontal motion:
Distance = velocity x time
$50=V_A \cos θ ×2.5 \\ V_A cosθ=20 \space\space(1) $
Vertical motion,
$S=ut+\dfrac 12 at^2 \\ 0=V_A \sin θ ×2.5-1/2 ×9.81 ×2.5^2 \\ V_A \sin θ=\dfrac {0.5 ×9.81×2.5^2}{2.5} \\ V_A \sin θ =12.2625 \space\space (2) $
From (1) and (2)
$V_A=23.46 m/s \space \space And\space\space θ= 31.51^0 $
O To A
Horizontal motion:
$V_A \cos θ =u \cos α+ 0 \\ u \cos α=20\space\space (3) $
Vertical motion:
$V_y^2=u_y^2+ 2as \\ (V_A \sin θ)^2=(u \sin α )^2+ 2 ×(-9.81)×7.5 \\ (23.46 × \sin 31.51)^2+ 2 ×9.81 ×7.5=(u \sin α )^2 \\ u \sin α=17.2457 \space\space (4) $
From (3) and (4)
$\dfrac {u \sin α}{u \cos α } = \dfrac {17.2457}{20} \\ α= 40.77^0 $
From (3), $u=26.4086 m/s $
Range,
$R= \dfrac {u^2 \sin 2 α}g = \dfrac {26.4086^2 \sin (2 ×40.77)}{9.81 } \\ R=70.33 m $