written 7.9 years ago by | modified 2.9 years ago by |
Mumbai University > Computer Engineering > Sem 3 > Discrete Structures
Marks: 6 Marks
Year: May 2016
written 7.9 years ago by | modified 2.9 years ago by |
Mumbai University > Computer Engineering > Sem 3 > Discrete Structures
Marks: 6 Marks
Year: May 2016
written 7.9 years ago by | • modified 7.9 years ago |
$\text{Writing down the Boolean matrix we get} \\ M_R=\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \\ \text{If we compute the higher powers of} \ \ M_R \text{we get}:$
$$(M_R)^2_\odot=\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \\ (M_R)^3_\odot=\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{bmatrix} \\ (M_R)^4_\odot=\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$\text{Thus we observe that}(M_R)^n_\odot equals (M_R)^2_\odot \text{if n is even, and equals} (M_R)^3_\odot \text{if n is odd and greater than 1. Hence we get,}$
$$M_{R\infty}=M_R \vee (M_R)^2_\odot \vee (M_R)^3_\odot$$
$\text{thus}$
$$M_{R\infty}=\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$