written 7.9 years ago by | • modified 7.9 years ago |
Mumbai University > First Year Engineering > Sem 1 > Applied Physics 1
Marks: 7M
Year: May 2016
written 7.9 years ago by | • modified 7.9 years ago |
Mumbai University > First Year Engineering > Sem 1 > Applied Physics 1
Marks: 7M
Year: May 2016
written 7.9 years ago by |
Given:
Nearest neighbor distance, $a = 2r=0.27 nm=0.27 \times 10^{-9} m$
Atomic weight of zinc=65.37
The height of the unit cell, h= 0.494 nm
Find:
(i) Volume of unit cell
(ii) Density
(iii) Atomic Packing fraction
Solution:
The volume of the unit cell, V:
The volume of the HCP unit cell is given by:
$V = \frac{3\sqrt{3}a^2c}{2}$
Substituting the values, we get
$V = \frac{3\sqrt{3}(0.27 \times 10^{-9})^2 \times 0.494\times 10^{-9}}{2}$
$V = 9.35 \times 10^{-29}m^3$
The density of zinc:
Effective number of atoms in unit cell of HCP, n=6
using the relation $\rho = \frac{nM}{N_A \times V}$, we have
$[where \hspace{0.3cm}n = 6, M = 65.37 (given), N_A = 6.0238 \times 10^{36}]$
$\rho = \frac{6 \times 65.37}{6.0238 \times 10^{26}\times 9.35 \times 10^{-29}} \approx 6964kg/m^3$
Atomic Packing Factor:
Now, c=1.633 a
$V_{unit cell}=1.633(2r)^3sin 60^0$
$V_{atom} = \frac{4}{3}πr^3$
$APF=\frac{2(\frac{4}{3} πr^3)}{(1.633(2r)^3 sin60^0}=0.741$