0
18kviews
Zn has HCP structure. The nearest neighbor distance is 0.27nm. The atomic weight of Zn is 65.37. Calculate the volume of unit cell, density and atomic packing fraction of Zn.

Mumbai University > First Year Engineering > Sem 1 > Applied Physics 1

Marks: 7M

Year: May 2016

1 Answer
1
1.7kviews

Given:

Nearest neighbor distance, $a = 2r=0.27 nm=0.27 \times 10^{-9} m$

Atomic weight of zinc=65.37

The height of the unit cell, h= 0.494 nm

Find:

(i) Volume of unit cell

(ii) Density

(iii) Atomic Packing fraction

Solution:

  1. The volume of the unit cell, V:

    The volume of the HCP unit cell is given by:

    $V = \frac{3\sqrt{3}a^2c}{2}$

    Substituting the values, we get

    $V = \frac{3\sqrt{3}(0.27 \times 10^{-9})^2 \times 0.494\times 10^{-9}}{2}$

    $V = 9.35 \times 10^{-29}m^3$

  2. The density of zinc:

    Effective number of atoms in unit cell of HCP, n=6

    using the relation $\rho = \frac{nM}{N_A \times V}$, we have

    $[where \hspace{0.3cm}n = 6, M = 65.37 (given), N_A = 6.0238 \times 10^{36}]$

    $\rho = \frac{6 \times 65.37}{6.0238 \times 10^{26}\times 9.35 \times 10^{-29}} \approx 6964kg/m^3$

  3. Atomic Packing Factor:

    Now, c=1.633 a

    $V_{unit cell}=1.633(2r)^3sin 60^0$

    $V_{atom} = \frac{4}{3}πr^3$

    $APF=\frac{2(\frac{4}{3} πr^3)}{(1.633(2r)^3 sin60^0}=0.741$

Please log in to add an answer.