written 8.0 years ago by | modified 2.9 years ago by |
Mumbai University > Computer Engineering > Sem 3 > Discrete Structures
Marks: 8 Marks
Year: May 2016
written 8.0 years ago by | modified 2.9 years ago by |
Mumbai University > Computer Engineering > Sem 3 > Discrete Structures
Marks: 8 Marks
Year: May 2016
written 8.0 years ago by |
Since Relation R is defined by aRb if and only if a<b.< p="">
So, relation R can be represented as:
R= {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3,4), (3, 5), (4, 5)}
R in matrix form is as follows:
$R=\begin{bmatrix}0&1&1&1&1 \\ 0&0&1&1&1 \\ 0&0&0&0&0 \\ 0)&0&0&0&1 \\ 0&0&1&1&0 \end{bmatrix}$
The Digraph for the relation R is as shown below:
Now $R^2$ in matrix form is as follows:
$R * R==\begin{bmatrix}0&1&1&1&1 \\ 0&0&1&1&1 \\ 0&0&0&0&0 \\ 0)&0&0&0&1 \\ 0&0&1&1&0 \end{bmatrix} * ==\begin{bmatrix}0&1&1&1&1 \\ 0&0&1&1&1 \\ 0&0&0&0&0 \\ 0)&0&0&0&1 \\ 0&0&1&1&0 \end{bmatrix}==\begin{bmatrix}0&0&1&2&3 \\ 0&0&0&1&2 \\ 0&0&0&0&0 \\ 0&0&0&0&0 \\ 0&0&1&0&0\end{bmatrix} \\ So, R^2= \{(1, 3), (1, 4), (1, 5), (2, 4), (2, 5), (3, 5)\}$
The Digraph for the relation $R^2$ is as shown below:
Now $R^3$ in matrix form is as follows:
$R^2* R==\begin{bmatrix}0&0&1&2&3 \\ 0&0&0&1&2 \\ 0&0&0&0&0 \\ 0&0&0&0&0 \\ 0&0&1&0&0\end{bmatrix} * =\begin{bmatrix}0&1&1&1&1 \\ 0&0&1&1&1 \\ 0&0&0&0&0 \\ 0)&0&0&0&1 \\ 0&0&1&1&0 \end{bmatrix}==\begin{bmatrix}0&0&0&1&3 \\ 0&0&0&0&1 \\ 0&0&0&0&0 \\ 0&0&0&0&0 \\ 0&0&0&0&0 \end{bmatrix} \\ So, R^3= \{(1, 4), (1, 5), (2, 5)\}$
The Digraph for the relation $R^3$ is as shown below: