written 7.9 years ago by |
1. Linearity property
Statement: If $x_1(n) \leftarrow FT \rightarrow X_1(\omega) and \ \ x_2(n) \leftarrow FT \rightarrow X_2(\omega)$
then, $a_1x_1(n)+a_2x_2(n) \leftarrow FT \rightarrow a_1 X_1(\omega) + a_2 X_2(\omega)$
Fourier transform of a linear combination of two or more signals is equal to the same linear combination of fourier transform of individual signal.
2. Periodicity
Statement: The periodicity is defined as $X(\omega) = X(\omega+2\omega k).$
If $x(n) \leftarrow FT \rightarrow X(k)$
Then, $1. x(n) = x(n+N), \\ 2. X(k) = X(k+N)$
3.Time shift
Statement: If $x(n) \leftarrow FT \rightarrow X(\omega) then, x(n-k) \leftarrow FT \rightarrow e^{-jωk}X(\omega)$
If a signal is shifted in time domain by k samples then the magnitude spectrum is unchanged but the phase spectrum is unchanged by amount $(-\omega k).$
4. Convolution
Statement: If $x_1(n) \leftarrow FT \rightarrow X_1(\omega) and x_2(n) \leftarrow FT \rightarrow X_2(\omega)$
then, $x_1(n) *x_2(n) \leftarrow FT \rightarrow X_1(\omega) * X_2(\omega)$
Convolution of two signals in time domain is equivalent to multiplication in frequency domain.
5. Time Reversal
Statement: If $x(n) \leftarrow FT \rightarrow X(\omega) then, x(-n) \leftarrow FT \rightarrow X(-\omega)$
If we fold the sequence in time domain then the magnitude spectrum is unchanged but the polarity of phase spectrum is unchanged.