0
2.7kviews
What is a Unitary Matrix?
1 Answer
written 8.1 years ago by |
Consider DFT matrix for $N=4,A=\dfrac{1}{√4}\begin{bmatrix}1&1&1&1 \\ 1&-j&-1&j \\ 1&-1&1&-1 \\ 1&j&-1&-j\end{bmatrix}$
If AA*=I
Then A is a unitary matrix
For N=4,
AA*$= \dfrac{1}{√4} \begin{bmatrix}1&1&1&1 \\ 1&-j&-1&j \\ 1&-1&1&-1 \\ 1&j&-1&-j \end{bmatrix} \dfrac{1}{√4} \begin{bmatrix}1&1&1&1 \\ 1&j&-1&-j \\ 1&-1&1&-1 \\ 1&-j&-1&j \end{bmatrix} \\ = \dfrac14 \begin{bmatrix}4&0&0&0 \\ 0&4&0&0 \\ 0&0&4&0 \\ 0&0&0&4 \end{bmatrix} \\ = \begin{bmatrix}1&0&0&0 \\ 0&1&0&0 \\ 0&0&1&0 \\ 0&0&0&1 \end{bmatrix}$
AA*= I