$x (n) = {1, 1, 1, 1, 0, 0, 0, 0}$
To find x [k]
By DFT, $\sum\limits_{n=0}^{N-1}x(n).W_N^{nk} $
For $x (n), N = 8\ x[k]=x[0]w_N^0+x[1]w_N^{K}+x[2]w_N^{2K}+x[3]w_N^{3K}+0+0+0+0\ \therefore x[k]=1+w_N^{K}+w_N^{2K}+w_N^{3K}$
At $k = 0, x [0] = 1 +1 +1 + 1 = 4$
At $ k = 1, x [1] = 1 + w^1_8 + w^2_8 + w^3_8$\\ = 1 + (0.707 – j0.707)+ (-j) +(-0.707 – j0.707)\\ = 1 – j2.414$
At $k =2, x [2] = 1 + w^1_8 + w^4_8 + w^6_8 \\ = 1 + (-j) + (-1) + (-j) \\ = 0 $
At $k = 3, x [3] = 1 + w^3_8 + w^6_8 + w^9_8\\ = 1 + (-0.707 – j0.707) + (j) + (0.707 – j0.707) \\ =1 – j1.414$
At $k = 4, x [4] = 1 – 1 + 1 – 1 = 0$
By symmetry about $k=\dfrac N2=\dfrac 82=4$
$x [k] = x* [-k] = x*[N - k] \\ x [k] = x* [8 - k] \\ k [5] = x* [3] = 1 + j1.414 \\ k [6] = x* [2] = 0\\
k [7] = x* [1] = 1 + j 2.414 \\ x [k] = \{4, 1 – j2.414, 0, 1 – j1.414, 0, 1 + j1.414, 0, 1 + j2.414\} $
Now,
$X_1 (n) = \{1, 0, 0, 0, 0, 1, 1, 1\} \\ X_1 (n) = x (-n)$
By DFT property of time reversal,
$x_1[k]=x[-k]\\ x_1=x[k].e^{-j2\pi k/N}$
At $k=0 \space x_1[0]=x[0].e^0=4$
At $k=1\space x_1[1]=x[1].e^{-j2\pi/8}= (1-j2.414).e^{-j\pi/4}=-1-2.414j$
At $k=2\space x_1[2]=x[2].e^{-jj\pi/2}=0$
At $k=3\space x_1[3]=x[3].e^{-j6\pi/8}=-1.7069+j0.2927$
At $k=4\space x_1[4]=0$
At $k=5\space x_1[5]=x[5].e^{-j10\pi/8}=-1.7069-j0.2927$
At $k=6\space x_1[6]=x[6].e^{-j12\pi/8}=0$
At $k=7\space x_1[7]=x[7].e^{-j7\pi/4}=-1+2.414j \\ x_1 [k] = \{4, -1 – j2.414, 0, -1.70697 + j.0.927, 0, -1.7069 – j0.2927, 0, -1+2.414j\}$
Now,
$x_2 (n) = \{0, 0, 1, 1, 1, 1, 1, 1\}$