Section X-X:
$\dfrac {l_y}{l_x}=\dfrac 53=1.67 \lt 2 $
Hence it is two way slab.
Trial depth(d)= $\dfrac {\text {short eff span}}{\text {S/D ratio * M.F.}}$
S/D ratio=20 (as slab in simply supported)
$d=\dfrac {3000}{20\times 1.4}=107.14mm $
Assume D=150 mm
$∴d=150-20-10/2 \\ d=125 mm$
Load calculations: Assume $1m \times 1m$ pamel
$D.L.=D\times 25 = 0.12\times25 = 3 \\ .75 kNm \\ F.F.= = 1 kN/m \\ L.L.= =3 kN/m\\ =7.75 kN/m$
Factored load(w) $=1.5\times 7.75=11.62 \approx 1 kN/m $
As it is simply supported
$V_{UD}= \dfrac {wl^2}2=\dfrac {12\times5}2=30kN \\ M_u=\dfrac {wl^2}8=\dfrac {12\times5^2}8=37.5 kNm \\ b=1000 mm, d=125 mm , fck=20, fy=415 \\ M_{umax } =0.138fckld^2 = 0.138\times 20\times 1000\times 125^2 \\ =43.12 kN \gt M_U ∴safe \\ Astr=\dfrac {0.5\times 20\times 1000\times 125}{415} (1-\sqrt{1-\dfrac {4.6\times37.5 \times 10^6}{20\times 1000\times 125^2}}) \\ Astr=996 mm^2 \\ Asr_{min}=(0.12bD/100)=180 mm^2 \lt Astr $
Provide $16 mm Φ$ bars
Spacing $=\dfrac {100\times201}{996} = 201.8 \approx 200 mm \\ Astp= \dfrac {1000\times 201}{200} =1005 mm^2 \\ Pt= \dfrac {100\times 1005}{1000\times 125}=0.8\% \\ Z_{uc}(pg. 73 of IS:456)=0.572. \\ V_{uc}=kz_{uc} bd=1.3\times 0.572\times 1000\times 125 \\ =92.95 kN \gt VUD ∴safe$
Dist. Steel:- $Ast_{min} =180 mm^2 , 8 mm Φ$ bars
Spacing $=\dfrac {1000\times 50}{180}=277.7\approx 250 mm $
r/f detail of slab along X-X
Section Y-Y:
It is also a two way slab
Trial depth:- dr = $\dfrac {\text {short eff span}}{\text {S/D ratio * M.F.}} \\ dr=\dfrac {3000}{26\times 1.4}$
(26:- Now it is continues with S3)
$dr = 82.41 mm $
Assume D=125 mm
$∴d=125-20-(10/2)=100 mm$
Load calculations: Assume 1m ⅹ1m pamel
$D.L.=D\times 25 = 0.125 \times 25 = 3.125 kNm\\ F.F.= = 1 kN/m \\ L.L.= =3 kN/m \\ =7.125 kN/m $
Factored load(w) $=1.5 \times 7.125=10.68 \approx 11 kN/m $
∴for both span :- $wlx^2 =99$
From pg. 91, of IS 456:2000 coefficients.
Dist. Steel:- $Ast_{min} =150 mm^2 , 8 mm Φ$ bar
Spacing= $\dfrac {1000\times 50}{180}=333.33\approx 300 mm $
All external beams (300ⅹ600)mm
All Internal beams=(300ⅹ500)mm
Self weight(ext.)=(0.3ⅹ0.6ⅹ25)×1.5
=6.75 kN/m
Self wt.(int)= (0.3ⅹ0.5ⅹ25) ⅹ1.5
= 5.63 kN/m
Wall load =(0.23ⅹ3.6ⅹ20)ⅹ1.5
=24.84 kN/m2 25 kN/m.
Beam B2:- slab load = 9 kN/m.
B4 Self wt.(ext)=6.75 kN/m
Wall load = 25
$= 40.75 \approx 41 kN/m $
Beam B3:-
slab load = 40 kN/m.
Self wt.(int)=5.63 kN/m
$= 45.63 \approx 46 kN/m $
By moment distribution method
Provide minimum shear r/f for both cases.
Provide 8mm Φ 2 LG stirrups
$S_1=\dfrac {0.87 f_y asvd}{V_{umun}}=\dfrac {0.87\times 415\times 100 \times 450}{54 \times 10^3} \\ =300.87 mm \\ S_2=0.75 \times d=0.75 \times 450=337.5 mm \\ S_3=300 mm $
Provide 8mm Φ@ 300 mm c/c.