written 8.4 years ago by |
Area of footing required $=\dfrac {(\text {total column load})+10%\text {self wt.}}{SBS} \\ =\dfrac { (2×1000+2×1400)×1.1}{110} \\ =52.8 m^2$
Assume 0.5 m projection from the column.
Area of footing $9.4× 7.4 = 69.56 \gt 52.8 m^2$
Provide size of raft footing 10 m× 8 m
Factored upward soil pressure (w)
$w=\dfrac {1.5×\text {column load}}{\text {Area of footing}}\\ =\dfrac {1.5×(2×1000+2×1400)}{11×8} \\ =90 kN|m^2 \lt SBS $
∴ safe
Slab: There is no need to introduce secondary beams as it is anyways one way slabs.
$∴w=90 kN|m^2 $
Cantilever slab $:-M = \dfrac {wl^2}2=45 KNm. $
Mid-span of continuous slab:-
$M(+ve) = \dfrac {wl^2}{10} = \dfrac {90\times2^2}{10}=36KNm$
Support of secondary beams :-
$M(-ve) = \dfrac {wl^2}{12}= \dfrac {90\times2^2}{12}=30 KNm \\ Mu_{max} =45 KNm\\ ∴Mu_{max} =0.138\space fck\space l\space d^2 \\ 45\times106=0.138\times20\times1000\times dr^2 \\ dr=127.68 mm$
Provide $D=250 mm$
$$D=250-50-20/2$$
$=190mm \\ \text {Astmin } =\dfrac {0.12bD}{100}=\dfrac {0.12}{100}×1000×250=300mm^2 $
Dist. Steel:-
r/f details of slabs :-
Provide 8 mm ∅ 150 mm c/c.
Design of beam A
From beam $B_1$ ,
Total upward load $= (4×6)×90=2160kN \\ udl= \dfrac {2160}6=360 kN|m$
Hence design and provide shear R|F
$V_{us}=1308-277=1031 KN $
Assume 12 mm ∅ 4 LG stirrups
$As_v = 4×113=452 mm^2$
Spacing $= s_1=\dfrac {0.87 f_y\space as_vd}{V_{us}} = \dfrac {0.87×415×452×940}{1031×10^3 }=148.79 mm \\ ≈125 mm$
$S_2=0.75×940=705 mm \\ S_3=300 mm $
∴Provide 12 mm ∅ 4 LG stirrups @ 125 mm c/c.
Similar calculations to be carried for the right side of plan.