Given: Q=10 TR; p2 = p3 = 4.2 bar;p1=p4=1.4 bar;T3=50℃=323K
T1= -20℃ = 253K
Process 1-2 = Isentropic compression in compressor
Process 2-3 = Constant pressure heat rejection in heat exchanger
Process 3-4 = Isentropic expansion in expander
Process 4-1 = Constant pressure heat absorption in refrigerator
i. C.O.P.
Assume compression and expansion to be isentropic.
$\frac{T2}{T1}=\big(\frac{p2}{p1}\big)^{\frac{\gamma - 1}{\gamma }}=\big(\frac{4.2}{1.4}\big)^{\frac{1.4-1}{1.4}}=1.369 \\
∴ T2=253×1.369=346K \\
\frac{T3}{T4}=\big(\frac{p3}{p4}\big)^{\frac{\gamma - 1}{\gamma }}=\big(\frac{4.2}{1.4}\big)^{\frac{1.4-1}{1.4}}=1.369 \\
∴ T4=323/1.369=236K \\
C.O.P.=\frac{(T1-T4)}{(T2-T3)-(T1-T4)}=2.83 $
Alternatively,
COP for ideal Reverse Brayton Cycle is
$$C.O.P.= \frac1{(r_p )^{\frac{(γ-1)}{γ}}-1}=2.71 \\
where \ \ \ r_p=\frac{p2}{p1}=\frac{p3}{p4}
$$
ii) Mass of air circulated per min
Let Heat absorbed per sec=$Q ̇_a$=3.5×capacity
Capacity = 10TR
∴ $Q ̇_a$=3.5×10=35 kJ/sec
Also $Q ̇_a=m ̇_a×C_p×(T1-T4)$
35= $m _a$×1×(253-236)
∴ $m _a$=2.0588 kg/sec=123.53 kg/min
iii. Theoretical piston displacement of compressor and expander
$$η_vol=\frac{V ̇_a}{V ̇_s}$$
Assuming 100% volumetric efficiency ,hence V ̇a=V ̇s for both the cases
PV=mRT
Let V1= Theoretical piston displacement of compressor per min
V1=$\frac{(m_a RT1)}{P1}=\frac{(123.53×287×253)}{(1.4×10^5 )}=64.06 m^3/min$
Let V4= Theoretical piston displacement of expander per min
$\frac{V4}{T4}=\frac{V1}{T1} \\
V4=\frac{(64×236)}{253}=59.7 m^3/min$
Note:
a) The size of compressor is described by volume of air entering it.
b) The size of expander is described by volume of air leaving it.
iv) Net power per TR
Net power consumed by plant $=W ̇_C-W ̇_E \\
= m ̇_a × C_p × [(T2-T1)-(T3-T4)] \\
=12.3528 kW
$
Hence net power per TR =$\frac{12.3528}{10}=1.235 \frac{kW}{TR}$