written 8.3 years ago by | • modified 4.5 years ago |
Following is the velocity potential function for the two dimensional irrotational flow in the cylinder coordinates: - $ϕ=\dfrac{m \cosθ}{r}$ - Determine the conjugate function (Stream function) -
written 8.3 years ago by | • modified 4.5 years ago |
Following is the velocity potential function for the two dimensional irrotational flow in the cylinder coordinates: - $ϕ=\dfrac{m \cosθ}{r}$ - Determine the conjugate function (Stream function) -
written 8.3 years ago by | • modified 8.3 years ago |
Consider the velocity potential function for the two dimensional irrotational flow,
$$ϕ=\dfrac{m \cosθ}{r}$$
We know that by the definition of velocity potential function in cylindrical coordinates,
$$\dfrac{∂ϕ}{∂r}=u_r$$
$∴u_r=\dfrac{∂ϕ}{∂r} \dfrac{m \cosθ}{r} \\ ∴u_r=-\dfrac{m \cosθ}{r^2}$
And
$\dfrac 1r \dfrac{∂ϕ}{∂θ}=u_θ \\ ∴u_θ=\dfrac 1r \dfrac{∂}{∂θ}\bigg(\dfrac{m \cosθ}{r}\bigg) \\ ∴u_θ=-\dfrac{m \cosθ}{r^2}$
We also know that by the definition of stream function in cylindrical coordinates,
$u_r=\dfrac 1r \dfrac{∂ψ}{∂θ} \\ ∴\dfrac{∂ψ}{∂θ}=r\bigg(-\dfrac{m \cosθ}{r^2}\bigg) \\ ∴\dfrac{∂ψ}{∂θ}=\bigg(-\dfrac{m \cosθ}{r}\bigg)$
Integrating with respect to θ treating r as a constant,
$∴ψ=\int\bigg(-\dfrac{m \cosθ}{r}\bigg) dθ \\ ∴ψ=-\dfrac{m \sinθ}{r}+fn(r)$
And
$u_θ=-\dfrac{∂ψ}{∂r} \\ ∴\dfrac{∂ψ}{∂r}=-\bigg(-\dfrac{m \sinθ}{r^2} \bigg) \\ ∴\dfrac{∂ψ}{∂r}=\bigg(\dfrac{m \sinθ}{r^2} \bigg)$
Integrating with respect to r treating θ as a constant,
$∴ψ=∫\bigg(\dfrac{m \sinθ}{r^2} \bigg) dr \\ ∴ψ=-\dfrac{m \sinθ}{r}+fn(θ)$
Comparing the two equations of ψ for common and uncommon terms, we get,
$ψ=-\dfrac{m \sinθ}{r}$
…This is the required Conjugate function (Stream function) for the given Velocity Potential function.