written 8.3 years ago by
teamques10
★ 68k
|
•
modified 5.6 years ago
|
Given:
$U=6 m/s \text{(Velocity of Uniform flow)} \\
k=15 m^2/s \text{(Strength of Source and Sink)} \\
2s=1.5 m \text{(Distance between source and sink)}$
To find:
Location of stagnation points $(S_1 and S_2)$
Lengths & width of the Rankine oval (L and W)
Equation of profile of the Rankine body
Sol:
We know the Stream function for the Uniform Stream, Source and Sink combination is given by,
$$ψ=Uy-\dfrac{q}{2π} \tan^{-1}\bigg(\dfrac{2ys}{x^2+y^2-s^2}\bigg)$$
For the stagnation point S(x,y), we put u=0 at y=0
Now,
$\begin{aligned}
u &=\dfrac{∂ψ}{∂y} \\
\therefore u&=0=\bigg[\dfrac{∂}{∂y}\bigg(Uy-\dfrac{q}{2π}tan^{-1} \bigg(\dfrac{2ys}{x^2+y^2-s^2}\bigg)\bigg)\bigg]_{y=0} \\
\therefore 0&=\bigg[U-\dfrac{q}{2π}\dfrac{1}{\bigg(1+\bigg(\dfrac{2ys}{x^2+y^2-s^2} \bigg)^2\bigg)} \bigg(\dfrac{(x^2+y^2-s^2 )2s-4sy^2}{(x^2+y^2-s^2 )}\bigg)\bigg]_{y=0} \\
\therefore 0&=\bigg[U-\dfrac{q}{2π} \bigg(\dfrac{2s}{x^2-s^2} \bigg)\bigg] \\
\therefore x&=±\sqrt{\dfrac{qs}{πU}+s^2} \\
\therefore x&=±\sqrt{\dfrac{qs}{πU}+s^2} \hspace{3cm} (\therefore q=2πk=94.2478 m^2/s and s=0.75 m) \\
\therefore x&=±\sqrt{\dfrac{94.2478(0.75)}{6π+0.75^2}} \\
\therefore x&=±2.0767 m \\
&\text{The location of stagnation points are} S_1 (-2.0767,0)and S_2 (2.0767,0)
\end{aligned}$
$\begin{aligned}
\therefore &\text{Length of the Rankine oval} = L=2x=4.1534 m \\
&\text{For the width of the Rankine oval, we put} ψ=0 at x=0 \\
\therefore ψ &=0=\bigg[Uy-\dfrac{q}{2π} \tan^{-1}\bigg(\dfrac{2ys}{x^2+y^2-s^2}\bigg) \bigg]_{x=0} \\
\therefore 0 &=\bigg[Uy-\dfrac{q}{2π} \tan^{-1}\bigg(\dfrac{2ys}{y^2-s^2}\bigg) \bigg] \\
\therefore Uy &=\dfrac{q}{2π} \tan^{-1}\bigg(\dfrac{2ys}{y^2-s^2}\bigg) \\
\therefore \bigg(\dfrac{2ys}{y^2-s^2}\bigg)&=\tan\bigg(\dfrac{2 \pi yU}{q}\bigg)
\end{aligned}$
Solving by trial and error,
y |
LHS |
RHS |
0.8 |
15.484 |
0.3314 |
1 |
3.4286 |
0.4228 |
1.4 |
1.5027 |
0.6269 |
1.8 |
1.0084 |
0.877 |
2 |
0.8727 |
1.0296 |
1.9 |
0.9352 |
0.95045 |
1.885 |
0.945 |
0.939 |
$\begin{aligned}
∴y&≈1.885 m \\
∴& \text{Width of the Rankine oval }=W=2y=3.77 m \\
&\text{We know that equation of Profile for the Rankine Body is,} \\
ψ&=0 \\
∴&Uy-\dfrac{q}{2π} \tan^{-1}\bigg(\dfrac{2ys}{x^2+y^2-s^2}\bigg)=0 \\
∴y&=\dfrac{q}{2πU} \tan^{-1}\bigg(\dfrac{2ys}{x^2+y^2-s^2}\bigg) \\
&\text{…this is the required equation.}
\end{aligned}$