$$\overline{F}$ = $\left(x+2y+az\right)i+\left(bx-3y-z\right)j+\left(4x+cy+2z\right)k$$ and
$$\overline{r} = x \overline{i}+y\overline{j}+z\overline{k}$$
$$\therefore dr = dx \overline{i}+dy\overline{j}+dz\overline{k}$$
Since $\overline{F}$ is irrotational
Curl $\overline{F}=0$
$\boldsymbol{\therefore }\boldsymbol{\ }\left| \begin{array}{ccc}
\overline{i} & \overline{j} & \overline{k} \\
\frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \\
F_x & F_y & F_z \end{array}
\right|=0$
$\therefore \ \left| \begin{array}{ccc}
\overline{i} & \overline{j} & \overline{k} \\
\frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \\
x+2y+az & {bx-3y-z} & 4x+cy+2z \end{array}
\right|=0$
$\therefore i[\frac{\partial }{\partial y}\left(4x+cy+2z\right)-\ \frac{\partial }{\partial z}({bx-3y-z})]-j\left[\frac{\partial }{\partial x}\left(4x+cy+2z\right)+\ \frac{\partial }{\partial z}\left(x+2y+az\right)\right]+k[\frac{\partial }{\partial x}\left(bx-3y-z\right)-\ \frac{\partial }{\partial y}(x+2y+az)]$
$\therefore i\left[c-1\right]-j\left[4-a\right]+k\left[b-2\right]=0i+0j+0k$
Comparing co-efficient of i,j,k
$$\therefore \left[c-1\right]=0$$
$$\therefore \left[4-a\right]=0$$
$$\therefore \left[b-2\right]=0$$
$$\therefore c=1\ ,\ a=4\ ,\ b=2$$
$$\therefore \ \overline{F} = \left(x+2y+az\right)i+\left(bx-3y-z\right)j+\left(4x+cy+2z\right)k$$
$$\because \overline{F}\ is \ irrotational \ , there \ exists \ a \ scalar \ potential \ of \ \overline{F} \ such \ that \ \overline{F}=\ \mathrm{\nabla }\oint $$
$$\therefore \left(x+2y+az\right)i+\left(bx-3y-z\right)j+\left(4x+cy+2z\right)k = i\frac{\partial \oint{}}{\partial x} + j\frac{\partial \oint{}}{\partial y}+k\frac{\partial \oint{}}{\partial z}$$
Comparing co-eeficient of i,j,k we get,
$$\frac{\partial \int{}}{\partial x}=\ \left(x+2y+az\right)$$
$$\frac{\partial \int{}}{\partial y}=\ \left(bx-3y-z\right)$$
$$\frac{\partial \int{}}{\partial z}=\ \left(4x+cy+2z\right)$$
Integrating we get ,
$\oint{=(\frac{x^2}{2}}+2yx+4zx)+\left(2xy-\frac{3y^2}{2}-zy\right)+(4zx-2y+\frac{{2z}^2}{2}$) + c
As the same term is twice, it is written only once in this type of integration.
$\therefore \ \int{=\frac{x^2}{2}}+2yx+4zx+2xy-\frac{3y^2}{2}-zy+4zx-2y+z^2+$c
$\therefore $ Scalar potential of $\overline{F}=\ \int{=\ 1/2[}x^2+4yx+8zx-3y^2-2zy+{2z}^2+$c
Now work done in moving a particle in this field = $\int_C{\overline{F}.\overline{dr}}$
$=\int_C{(\left(x+2y+4z\right)}\ dx+\left(2x-3y-z\right)dy+\left(4x+y+2z\right)dz$
Integrating we get ,
$=[x^2+4yx+8zx-3y^2-2zy+{2z}^2]^{(3,3,2)}_{(1,2,-4)}$
$=[9/2 +2*3*3 +4*2*3 -3 * 9/2 -3*2*-4] -- [1/2+2*2*1 + 4*(-4)*1-3* 2 - 2*(-4) +16]
=24.5$
$\boldsymbol{\therefore }\boldsymbol{Work}\boldsymbol{\ }\boldsymbol{done}\boldsymbol{\ }\boldsymbol{in}\boldsymbol{\ }\boldsymbol{moving}\boldsymbol{\ }\boldsymbol{a}\boldsymbol{\ }\boldsymbol{particle}\boldsymbol{=}\boldsymbol{24}.\boldsymbol{5}$