R1=0.1Ω; X1=0.22Ω; R2=0.035Ω; X2=0.012Ω
Equivalent Resistance ref. to primary,
$R1e=R_1+R^2_1 \\
= 0.1+0.035\bigg(\dfrac{2400}{120}\bigg)^2 \\
=14.1Ω$
Equivalent Reaction ref. to primary,
$X1=X1+X^2_1 \\
=0.22+0.012\bigg(\dfrac{2400}{120}\bigg)^2 \\
=5.02Ω$
$Z_1=\sqrt{R_1^2+X_1^2}=0.2417 \Omega ; \hspace{2cm} Z_2=\sqrt{R_2^2+X_2^2}=0.037 \Omega$
Equation Impedance ref. to primary,
$Z_{1s}=z_1+Z_2^1 \\
=0.2417+0.037\times\bigg(\dfrac{2400}{120}\bigg)^2 \\ = 15.0415 \Omega \\ or Z_{ie}=\sqrt{R_{ie}^2+X_1^2}=14.967\Omega$
Equation Reaction ref. to Secondary,
$X_{2e}=X_2+X_1^1 \\ =0.012+0.22 \times\bigg(\dfrac{120}{2400}\bigg)^2 \\ =0.01255 \Omega$
Equation Resistance ref. to secondary,
$R_{2e}=R_2+R_1^1 \\
=0.035+0.1\times\bigg(\dfrac{120}{2400}\bigg)^2 \\ =0.03525 \Omega$
Equation Impendance ref. to secondary, $Z2e=0.03742Ω$
$I_{1ft}=\dfrac{30\times10^3}{2400}=12.5 A \\
I_{2ft}=\dfrac{30\times10^3}{120}=250 A$
$\hspace{2cm}$ $P_{cuFi}=I_{1ft}^2R_1+I_{2ft}^2R_2 \\ \;
\\ \;
P_{cuFi}=2.203kw$
At 75% of full load x=0.75
$P_{cu}=X2X P_{cuFi}=1.2393kw$