written 8.3 years ago by
teamques10
★ 68k
|
•
modified 8.3 years ago
|
Given:
50 KVA
4400/220 volt transformer i.e.
E1=4400V
E2=220V
R1=3.45Ω
R2=0.009Ω
X1=52Ω
X2=0.015Ω
$K=\dfrac{E_2}{E_1} =0.05$
$I_1$ $=\dfrac{\text{KVA rating}\times1000}{E_2} \\ =\dfrac{50\times1000}{4400}\\=11.3636A$
$I_2$ $=\dfrac{\text{KVA rating}\times1000}{E_2} \\ =227.2727$
In reference to primary side
Resistance, R01=R1+R21
$R_{01}=R_1+\dfrac{R_2}{K^2}=3.45+\dfrac{0.009}{(0.05)^2}=7.05\Omega$
Reactance, X01=X1+X21
$X_{01}=X_1+\dfrac{X_2}{K^2}=5.2+\dfrac{0.015}{(0.05)^2}=11.2\Omega$
Impedance, $Z_{01}=\sqrt{R_{01}^2+X _{01}^2 } =13.23Ω$
In reference to secondary side,
Resistance,
$R_{02}$ $=R_2+R_1^1 \\ =R_2+K^2R_1 \\ =0.009+(0.05)^2 \times 3.45 \\ =0.017625 \Omega$
Reactance,
$X_{02}$ $=X_2+X_1^1 \\ =X_2+K^2X_1 \\ =0.015+(0.05)^2\times5.2 \\=0.028 \Omega \\ Z_{02}=\sqrt{R_{02}^2+x_{02}^2}=0.033^2$
Total Copper Loss, Using individual resistances,
$W_{cu}$ $=I_1^2R_1+I_2^2R_2 \\=(11.3636)^23.45+(227.2727)^20.009 \\=910.379 watt$
Using equivalent resistance,$R_{01}$
$W_{cu}$ $=(I_1)^2R_{01} \\ =(11.3636)^2\times7.05 \\ 910.367 watt$
Using equivalent resistance,$R_{02}$
$W_{cu}$ $=(I_2)^2R_{02} \\ =(227.2727)^2\times0.017625 \\ = 910.382 watt$