0
6.4kviews
Draw the equivalent circuit of the transformer referred to LV side insert all parameters values.

A SKVA, 200/400 volt, 50Hz, single phase transformer gave the following test results.

OC test(LV side) 200 V 0.7 A 60 W
Sc test (HV side) 22 V 16 A 120 W

Draw the equivalent circuit of the transformer referred to LV side insert all parameters values.

Effectively at 0.9 power factor lending if operating at rated load.

1 Answer
1
463views

Given:

$P_{APPARENT}= 5 KVA, 200/400 volt, 50 Hz$

V1= 220V, I0= 0.7A, WI=60 W

VSC= 22V, I2= 16, WSC=120W

From OC test:-

W1=V1 I0 cos Ø0

$\cos \emptyset_0=\dfrac{W_i}{V_1I_0}=\dfrac{60}{200\times0.7}=0.4285 A \\ \emptyset_0=64.623^0 \\ \sin \emptyset=0.904 \\ I_w=I_0 \cos \emptyset_0 \\=(0.7)(0.4286) \\ =0.2999 A \\ I_u=I_0 \sin \emptyset_0 \\ =(0.7)(0.935) \\ =0.6324 A \\ R_0=\dfrac{V_1}{I_w}=\dfrac{200}{0.2999}=666..89 \Omega \\ X_0=\dfrac{V_i}{I_u}=\dfrac{200}{0.6324}=316.255 \Omega$

Form SC test :-

$W_{SC}=I^2_2R_{02} \\ R_{02}=\dfrac{W_{SC}}{I_2^2}=\dfrac{120}{16^2}=0.46875 \Omega \\ Z_{02}=\dfrac{V_{SC}}{I_2}=\dfrac{22}{16}=1.375 \Omega \\ X_{02}=\sqrt{Z_{02}^2-R_{02}^2}=1.2926 \Omega \\ Now \ \ \ k= \dfrac{E_2}{E_1}=\dfrac{400}{200}=2 \\ R_{01}=\dfrac{R_{02}}{k^2}=0.1172 \Omega \\ X_{01}=\dfrac{X_{02}}{K^2}=0.32315 \Omega$

enter image description here

Now pf 0.9 X=1...........rated load

$\% η=\dfrac{x\times\text{full load KVL}\times pf}{(x\times\text{full load KVL}\times pf)++W_p\text{(in KW)}+x^2w_{cu}\text{(in KW)}} \\ η=\dfrac{1\times5\times0.9}{(1\times5\times0.9)+(0.06)+1^2(0.07324)\times100} \\ η=0..9712\times100 \\ η=97.12 \% \\ \therefore η=0.9712$

Please log in to add an answer.