0
24kviews
Evaluate $\int \frac{sin\pi z^2 + cos\pi z^2}{(z - 1)(z - 2)}dz$, where c is the circle $|z| = 3$
1 Answer
1
5.8kviews
written 8.5 years ago by |
The circle $|z| = 3$ has center at (0, 0) and radius 3. The point z = 1 and z = 2 lie inside the circle. Hence f(z) is analytic in C. Hence using partial fraction by removing
$f(z) = sin\pi z^2 + cos\pi z^2$
$\frac{1}{(z - 1)(z - 2)} = \frac{A}{(z - 1)} + \frac{B}{(z - 2)} \\ \frac{1}{(z - 1)(z - 2)} = \frac{(z - 2)A + (z - 1)B}{(z - 1)(z - 2)}$
Let z = 2 we get B = 1
And Let z = 1 we get A = 1
$\therefore \frac{1}{(z - 1)(z - 2)} = \frac{1}{(z - 2)} - \frac{1}{(z - 1)} \\ \therefore \int \frac{sin\pi z^2 + cos\pi z^2}{(z - 1) (z - 2)} \\ = \int \frac{f(z)dz}{z - 2} - \int \frac{f(z)dz}{z - 1} \\ = 2\pi i f(2) - 2\pi i f(1) \\ = 2\pi i (sin\pi 4 + cos4\pi) - 2\pi i(sin\pi + cos\pi) \\ = 2\pi i (1) - 2\pi i(-1) \\ = 4\pi i$
ADD COMMENT
EDIT
Please log in to add an answer.