written 8.3 years ago by
teamques10
★ 68k
|
•
modified 8.3 years ago
|
Load-factor per voice user = $(1+0.5). \frac{1}{1+ \frac{3840}{12.2}. \frac{1}{2.512}. \frac{1}{0.65}}=000774$
Required interface margin=$3dB = 2 = \frac{1}{1= \rho}$
Cell loading = $\rho$ =0.5
Number of voice users= $\frac{0.5}{0.00774} \approx$ per cell
$\therefore M_{max} \approx \frac{G_p}{d}. \frac{1}{(1+\beta)}. \frac{\eta_c}{vf};$
where:
$\hspace{1cm}$ $\eta_c$ =power control efficiency (often 80% to 80%)
$\hspace{1cm}$ $\beta$=interference factor due to other cell
$\hspace{1cm}$ $d=(E_b/I_t)_{reqd}$
$\hspace{1cm}$ $G_p$=processing gain
$\hspace{1cm}$ $N_o$=noise density
$\hspace{1cm}$ R=information rate
$\hspace{1cm}$ $M_{max}$ is the poll capacity of the cell.
$\hspace{1cm}$ assuming $\eta_c$=1
$M_{max}= \frac{3.84 × 10^6}{12.2 × 10^3}. \frac{1}{0.65}. \frac{1}{1+0.5}. \frac{1}{(2.52)} = 128$