$R = 100Ω \\
V = 400V \\
f=50H_Z \\
V_R=200V \\
V_{coil}=300V \\
\text{Power consumed by choke coil:} \\
I= \dfrac{V_R}{R}= \dfrac{200}{100}=2A \\
Z_{coil}= \dfrac{V_{coil}}{I}= \dfrac{300}{2}=150Ω \\
\sqrt{r^2+X_L^2 }=150 \\
r^2+X_L^2=22500……………..(1) \\
Z= \dfrac{V}{I} =\dfrac{400}{2}=200Ω \\
\bar{Z} = ( R+V)+jX_L \\
Z= \sqrt{( R+V)^2+X_L^2}=200 \\
(100+r)^2+ X_L^2=40000………………(2) \\
\text{Subtract (1) from (2)} \\
(100+r)^2- r^2 =17500 \\
10000+20r+r^2- r^2=17500 \\
200r=17500-10000 \\
200r=7500 \\
r=3.75Ω \\
\text{Substituting the value of r in equation (1)} \\
(37.5)^2 + X_L^2=22500 \\
X_L^2=21093.75 \\
X_L=145.24 Ω \\
P_{coil}= I^2 r \\
=2^2×37.5 \\
=50W \\
\text{Power factor of the choke coil} \\
pf_{coil}=\dfrac{V}{Z_{coil}} =\dfrac{37.5}{150}=0.25 (lag) \\
\text{Power factor of the circuit} \\
pf_{circuit}=\dfrac{R+r}{Z}= \dfrac{1000+37.5}{200}=0.678 (lag)$