written 8.5 years ago by | • modified 8.5 years ago |
$L= { x {a, b}*|N_a(x) >N_b(x) }, N_a(x) >N_b(x)$
Mumbai university > Comp > SEM 4 > TCS
Marks: 10M
Year: Dec 2015
written 8.5 years ago by | • modified 8.5 years ago |
$L= { x {a, b}*|N_a(x) >N_b(x) }, N_a(x) >N_b(x)$
Mumbai university > Comp > SEM 4 > TCS
Marks: 10M
Year: Dec 2015
written 8.5 years ago by |
In DPDA there is only one move in every situation. A DPDA is less powerful than NPDA.
Every context free language cannot be accepted by a DPDA
Logic:
L = { x {a, b}* | Na(x) > Nb(x) }, Na(x) > Nb(x) means number of a's and b’s.
Implementation:
$ M = (Q, Σ, Ґ, δ,q_0, z_(0 ), F )$
$ Q = {q_0, q_1, q_f}$
$Σ = {a, b}$
$Ґ = {X, R}$
$q_0 = q_0$
$z_0 = R$
$F = {q_f}$
δ:
$δ (q_0, a, R) = {(q_0, XXR)}$
$δ (q_0, a, X) = {(q_0, XXX)}$
$δ (q_0, b, X) = {(q_1, €)}$
$δ (q_1, b, X) = {(q_1, €)}$
$δ (q_1, €, R) = {(q_f, R)}$
Example:
$(q_0, aaabbbbbb, R)$
$| - (q_0, aabbbbbb, XXR)$
$| - (q_0, abbbbbb, XXXXR)$
$| - (q_0, bbbbbb, XXXXXXR)$
$| - (q_1, bbbbb, XXXXXR)$
$| - (q_1, bbbb, XXXXR)$
$| - (q_1, bbb, XXXR)$
$| - (q_1, bb, XXR)$
$| - (q_1, b, XR)$
$| - (q_1, €, R)$
$| - (q_f, €, R)$
(Accept)