written 8.7 years ago by |
Applied Mathematics 1 - Dec 2011
First Year Engineering (Semester 1)
TOTAL MARKS: 80
TOTAL TIME: 3 HOURS
(1) Question 1 is compulsory.
(2) Attempt any three from the remaining questions.
(3) Assume data if required.
(4) Figures to the right indicate full marks.
1(a) If arg(z+1) = π/6 and arg(z-1) = 2π/3 find z, a complex number.(5 marks)
1(b) Prove that tanh-1 (sinθ) = cosh-1 (secθ)(5 marks)
1(c) Prove that real part of $$ (1+i\sqrt{3})^{(1+l\sqrt{3})} \ is \ 2e^{-\pi/\sqrt{3}} \ \cos \left (\dfrac {\pi}{3}+\sqrt{3}\cdot \log 2 \right ) $$(5 marks)
1(d) Test the convergence of
$$ \dfrac{x}{1.2}+\dfrac{x^2}{3.4}+\dfrac{x^3}{5.6}+\dfrac{x^4}{7.8}+......(x > 0, \ x \neq 1 ) $$(5 marks)
2(a) If b+ic = (1+a)z and a2 + b2 + c2 = 1 then
$$Prove \ that = \dfrac{a+ib}{1+c}=\dfrac{1+iz}{1-iz} $$(6 marks)
2(b) Find the roots α, α2, α3,α4 of the equation x5 - 1 = 0 and show that
(1-α)(1-α2)(1-α3)(1-α4) = 5(6 marks)
2(c) If u=f(e(y-z),e(z-x),e(x-y)) then
$$Prove \ that = \dfrac{{\partial}u}{{\partial}x}+\dfrac{{\partial}u}{{\partial}y}+\dfrac{{\partial}u}{{\partial}z} =0$$(8 marks)
3(a) Prove that arg z1 - arg z2 = π/2 if
|z1 + z2 |= |z1 - z2 | where z2 , z1 are complex numbers.(6 marks)
3(b) Prove that αn + βn = 2cos n θ cosecn θ
if α and β roots of the equation
z2sin2 θ - z sin2θ + 1 = 0 .(6 marks)
3(c) Show the following:
$$tan^{-1}i{\displaystyle{ \Big(\dfrac{x-a}{x+a}}\Big)} = \dfrac{i}{2}log{\Big(\dfrac{x}{a}\Big)}$$(8 marks)
4(a) Prove the following:
x2y(n+2) + (2n+1)xy(n+1) + 2n2 yn = 0
$$if \ \ \ cos ^{-1} \Big(\dfrac{y}{b} \Big) = log\Big(\dfrac{x}{n} \Big)n$$(6 marks)
4(b) If z = tan(y+ax) + (y-ax)(3/2)
$$\dfrac{\partial^2z}{\partial x^2} =a^2 \dfrac{\partial^2z}{\partial y^2}$$(6 marks)
4(c) If the given function, f(xy2,z - 2x) = 0, thenprove that
$$2x\dfrac{\partial z}{\partial y} -y\dfrac{\partial z}{\partial y}=4x$$(8 marks)
5(a) Separate into real and imaginary parts
cos-1(3i/4).(6 marks)
5(b) Prove the following:
$$x\dfrac{\partial u}{\partial x} =y\dfrac{\partial u}{\partial y}=z\dfrac{\partial u}{\partial z} = 0 \ \ \ \ if \ \ \ u = f\Big(\dfrac{x}{y},\dfrac{y}{z},\dfrac{z}{x} \Big) $$(6 marks)
5(c) Examine the function
f(x,y) = y2 + 4xy + 3x2 + x3 for extreme values.(8 marks)
6(a) Find x, if a = xi + 12j - k; b = 2i + 2j + k; c = i + k are coplanar. Also find unit vector in the direction of a(6 marks)
6(b) Prove the following:
$$\log \ \sec \ x = \Big [ \dfrac{x^2}{2}+\dfrac{x^4}{12}+\dfrac{x^6}{45}... \Big]$$(6 marks)
6(c) Evaluate the following:
$$ \displaystyle \lim_{x\ \to \ 0} \ \dfrac{e^x sinx-x-x^2}{x^2+xlog(1-x)}$$(8 marks)
7(a) If f(x,y) = 0 and ϕ(y,z) = 0 then prove that
$$\dfrac{\partial f}{\partial y}.\dfrac{\partial \varphi}{\partial z}.\dfrac{dz}{dx} = \dfrac{\partial f}{\partial x}.\dfrac{\partial \varphi}{\partial y}$$(6 marks)
7(b) Find (1.04)3.01 by using theory of approximation.(6 marks)
7(c) Prove the following:
$$\Big [\bar b \times\bar a\ \ \ \bar a \times\bar c \ \ \ \bar a \times \bar b \Big] = \Big[ \bar a \ \ \bar b \ \ \bar c \Big]^2$$(8 marks)