0
6.2kviews
Using Cauchy's integral formula, evaluate $\int\dfrac {(12z-7)}{(z-1)^2(2z+3)}$ where $C:|z+1|=\sqrt3$
1 Answer
1
695views

Let $I=\int\dfrac {(12z-7)}{(z-1)^2(2z+3)}$

Circle $|z+1|=\sqrt3$ has centre $(0,-1)$ and radius $\sqrt3$

Here, $Z_0=\dfrac {-3}2$ lies outside while $ Z_0=1$ lies inside the side

$Z_0=1$ in Q pole of order 2

enter image description here

$$\therefore I=\int\dfrac {\frac {(12z-7)}{(2z+3)}}{(z-1)^2}dz$$

$Let \space \space f(z)=\dfrac {12z-7}{2z+3}\space and \space \space Z_0=1\\ \therefore f^1(z)=\dfrac {(2z+3)12-(12\times 1-7)2}{(2z-3)^2}\\ \therefore f^1(z_0)=f^1(1)=\dfrac {2(2(1)+3)12-(12\times …

Create a free account to keep reading this post.

and 5 others joined a min ago.

Please log in to add an answer.