(1)To find $V_A$ & $V_B$:
Considering the stiffening girder asasis beam supporting the given external loud system.
$\sum M_A=0$
$250\times 25+300\times 80-V_B\times 120=0$
$V_B=252kN(\uparrow)$
$\sum F_y=0(\uparrow +ve)$
$V_A-250-300+252=0$
$V_A=298kN(\rightarrow)$
(2) To find: H
B.M at centre of girder
$B.M_C=298\times 60-250\times 35=9130kN.m$
$B.M_D=298\times 25=7450kN.m$
$B.M_E=252\times 40=10080kN.m$
Horizontal sere-action at each end of the cable
$H=\frac{M_C}{h}=\frac{9130}{12}=760.83kN$
(3)Find equivalent Udl(we):
$H=\frac{Wel^2}{8h}$
$760.83=\frac{We\times (120)^2}{8\times 12}=5.07kN/m$
$\therefore V_{A_1}=V_{B_1}=\frac{WeL}{2}=\frac{5.07\times 120}{2}=304.22kN$
(4)$T_{max}:$
$T_max=\sqrt{V_{A_1}^2+H^2}$
$=\sqrt{(304.33)^2+(760.83)^2}$
$T_max=819.44kN$
(5)S.F calculation:
For the girder,
S.F. at any section x,
$S.F_x=\text{Beam shear} - H\tan \theta$
where,
$\tan \theta=\frac{dy}{dx}=\frac{4h}{l^2}(l-2x)$
At 40m from left end:
At x=40 m,
$\tan \theta=\frac{4\times 12}{120^2}(120-2\times 40)=\frac{2}{15}$
$\therefore Beam shear=298-250=48kN$
$\therefore S.F_x=48-760.83\times \frac{2}{15}=-53.44kN$
(6) Bending Moment Calculation:
B.M at any section is given by
$B.M._x=\text{Beam moment}-H_y$
At x=40m,
$y=\frac{4h}{l^2}(lx-x^2)=\frac{32}{3}m$
Beam moment at 40m from left end
$B.M=298\times 40-250\times 15=8170kNm$
$B.M=8170-760.83\times \frac{32}{3}$
$B.M=54.48kNm$